
Cling Documentation
Release 1.0~dev

The Cling Team

Aug 24, 2023

CONTENTS

1 Table of Contents 3
1.1 When and why was Cling developed? . 3
1.2 Interactivity in C++ with Cling . 3
1.3 Why interpreting C++ with Cling? . 4
1.4 Used Technology . 5
1.5 Cling is (also, but not only) REPL . 5
1.6 Command Line . 6
1.7 Applications . 7
1.8 Conclusion . 8
1.9 Literature . 8

i

ii

Cling Documentation, Release 1.0~dev

Cling is an interactive C++ interpreter built on top of Clang and LLVM. It uses LLVM’s Just-In-Time (JIT) compiler
to provide a fast and optimized compilation pipeline. Cling uses the read-eval-print-loop (REPL) approach, making
rapid application development in C++ possible, avoiding the classic edit-compile-run-debug cycle approach.

Cling’s last release, download instructions, dependencies, and any other useful information for developers can be found
on Cling’s GitHub webpage.

Find out more about Interpreting C++ on the Compiler Research Group’s webpage.

CONTENTS 1

https://clang.llvm.org/
https://llvm.org/
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://github.com/vgvassilev/cling
https://compiler-research.org/

Cling Documentation, Release 1.0~dev

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 When and why was Cling developed?

Cling was first released in 2014 as the interactive, C++ interpreter in ROOT. ROOT is an open-source
program written primarily in C++, developed by research groups in high-energy physics including CERN,
FERMILAB and Princeton. ROOT is nowadays used by most high-energy physics experiments. CERN
is an European research organization that operates the largest particle physics laboratory in the world. Its
experiments collect petabytes of data per year to be serialized, analyzed, and visualized as C++ objects.
In this framework, Cling was developed with the aim to facilitate the processing of scientific data in the
field of high-energy physics . Cling is a core component of ROOT: it provides essential functionality
for the analysis of vast amounts of very complex data produced by the experimental high-energy physics
community by enabling (1) interactive exploration in C++, (2) dynamic interoperability (see cppyy, an
automatic, runtime Python/C++ binder), and (3) rapid prototyping capabilities.

1.2 Interactivity in C++ with Cling

Interactive programming is a programming approach that allows developers to
change and modify the program as it runs. The final result is a program that actively responds to a
developers’ intuitions, allowing them to make changes in their code, and to see the result of these
changes without interrupting the running program. Interactive programming gives programmers the
freedom to explore different scenarios while developing software, writing one expression at a time,
figuring out what to do next at each step, and enabling them to quickly identify and fix bugs whenever
they arise. As an example, the High-Energy Physics community includes professionals with a variety
of backgrounds, including physicists, nuclear engineers, and software engineers. Cling allows for
interactive data analysis in ROOT by giving researchers a way to prototype their C++ code, allowing
them to tailor it to the particular scope of the analysis they want to pursue on a particular set of data
before being added to the main framework.

Interpreted language is a way to achieve interactive programming. In
statically compiled language, all source code is converted into native machine code and then executed
by the processor before being run. An interpreted language instead runs through source programs
line by line, taking an executable segment of source code, turning it into machine code, and then
executing it. With this approach, when a change is made by the programmer, the interpreter will
convey it without the need for the entire source code to be manually compiled. Interpreted languages
are flexible, and offer features like dynamic typing and smaller program size.

Cling is not an interpreter, it is a Just-In-Time (JIT) compiler that feels
like an interpreter, and allows C++, a language designed to be compiled, to be interpreted. When us-
ing Cling, the programmer benefits from both the power of C++ language, such as high-performance,

3

https://root.cern/
https://home.cern/
https://www.fnal.gov/
https://www.princeton.edu/
https://cppyy.readthedocs.io/en/latest/
https://root.cern/

Cling Documentation, Release 1.0~dev

robustness, fastness, efficiency, versatility, and the capability of an interpreter, which allows for in-
teractive exploration and on-the-fly inspection of the source-code.

1.3 Why interpreting C++ with Cling?

1. Learning C++:

One use case of Cling is to aid the C++ learning process. Offering imediate feedback the user can easily
get familiar with the structures and spelling of the language.

2. Creating scripts:

The power of an interpreter lays as well in the compactness and ease of repeatedly running a small snippet
of code - aka a script. This can be done in Cling by inserting the bash-like style line:

#!/usr/bin/cling

3. Rapid Application Development (RAD):

Cling can be used successfully for Rapid Application Development allowing for prototyping and proofs of
concept taking advantage of dynamicity and feedback during the implementation process.

4. Runtime-Generated Code

Sometime it’s convenient to create code as a reaction to input (user/network/configuration). Runtime-
generated code can interface with C++ libraries.

5. Embedding Cling:

The functionality of an application can be enriched by embedding Cling. To embed Cling, the main pro-
gram has to be provided. One of the things this main program has to do is initialize the Cling interpreter.
There are optional calls to pass command line arguments to Cling. Afterwards, you can call the interpreter
from any anywhere within the application.

For compilation and linkage the application needs the path to the Clang and LLVM libraries and the invo-
cation is order dependent since the linker cannot do backward searches.

g++ embedcling.cxx -std=c++11 -L/usr/local/lib
-lclingInterpreter -lclingUtils
-lclangFrontend -lclangSerialization -lclangParse -lclangSema
-lclangAnalysis -lclangEdit -lclangLex -lclangDriver -

→˓lclangCodeGen
-lclangBasic -lclangAST
`llvm-config
--libs bitwriter mcjit orcjit native option
ipo profiledata instrumentation objcarcopts`

-lz -pthread -ldl -ltinfo
-o embedcling

Embedding Cling requires the creation of the interpreter. Optionally compiler arguments and the resource
directory of LLVM can be passed. An example is the following:

#include "cling/Interpreter/Interpreter.h"

int main(int argc, char** argv) {
const char* LLVMRESDIR = "/usr/local/"; //path to llvm resource directory
cling::Interpreter interp(argc, argv, LLVMRESDIR);

(continues on next page)

4 Chapter 1. Table of Contents

Cling Documentation, Release 1.0~dev

(continued from previous page)

interp.declare("int p=0;");
}

A more complete example could be found in tools/demo/cling-demo.cpp.

1.4 Used Technology

LLVM is a free, open-source compiler infrastructure under the Apache License 2.0. It is designed as
a collection of tools including Front Ends parsers, Middle Ends optimizers, and Back Ends to produce
machine code out of those programs.

Clang is a front-end that uses a LLVM license. Clang works by taking the source language (e.g. C++) and
translating it into an intermediate representation that is then received by the compiler back end (i.e., the
LLVM backend). Its library-based architecture makes it relatively easy to adapt Clang and build new tools
based on it. Cling inherits a number of features from LLVM and Clang, such as: fast compiling and low
memory use, efficient C++ parsing, extremely clear and concise diagnostics, Just-In-Time compilation,
pluggable optimizers, and support for GCC extensions.

Interpreters allow for exploration of software development at the rate of human thought. Nevertheless,
interpreter code can be slower than compiled code due to the fact that translating code at run time adds to
the overhead and therefore causes the execution speed to be slower. This issue is overcome by exploiting
the Just-In-Time (JIT) compilation method, which allows an efficient meory management (for example, by
evaluating whether a certain part of the source code is executed often, and then compile this part, therefore
reducing the overall execution time).

With the JIT approach, the developer types the code in Cling’s command prompt. The input code is then
lowered to Clang, where is compiled and eventually transformed in order to attach specific behavior. Clang
compiles then the input into an AST representation, that is then lowered to LLVM IR, an intermediate
language that is not understood by the computer. LLVM’s just-in-time compilation infrastructure trans-
lates then the intermediate code into machine language (eg. Intel x86 or NVPTX) when required for use.
Cling’s JIT compiler relies on LLVM’s project ORC (On Request Compilation) Application Programming
Interfaces (APIs).

1.5 Cling is (also, but not only) REPL

A read-eval-print-loop (REPL) is an interactive programming environment that takes user inputs, executes
them, and returns the result to the user. In order to enable interactivity in C++, Cling provides several
extensions to the C++ language:

1. Defining functions in the global scope: Cling redefines expressions at a global level. C++ provides
limited support for this, Cling possesses the necessary semantics to re-define code while the program
is running, minimizing the impedance mismatch between the REPL and the C++ codebase, and
allowing for a seamlessly interactive programing experience.

2. Allows for implementation of commands that provide information about the current state of the
environment. e.g., has an Application Programming Interface (API) to provide information about
the current state of the environment.

3. Error recovery: Cling has an efficient error recovery system which allows it to handle the errors
made by the user without restarting or having to redo everything from the beginning.

1.4. Used Technology 5

tools/demo/cling-demo.cpp
https://llvm.org/
https://www.apache.org/licenses/LICENSE-2.0
https://clang.llvm.org/
https://gcc.gnu.org/
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Common_Intermediate_Language
https://en.wikipedia.org/wiki/Common_Intermediate_Language
https://llvm.org/docs/ORCv2.html
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://en.wikipedia.org/wiki/API

Cling Documentation, Release 1.0~dev

4. Tight feedback loop: It provides feedback about the results of the developer’s choices that is both
accurate and fast.

5. Facilitates debugging: The programmer can inspect the printed result before deciding what expres-
sion to provide for the next line of code.

1.6 Command Line

Cling has its own command line, which looks like any other Unix shell. The emacs-like command line
editor is what we call interactive command line or interactive shell.

Once we start Cling it automatically includes several header files and its own runtime universe. Thus it
creates the minimal environment for the user to start.

1.6.1 Grammar

Cling is capable to parse everything that Clang can do. In addition, Cling can parse some interpreter-
specific C++ extensions.

1.6.2 Metaprocessor

Cling Metaprocessor provides convenient and easy to use interface for changing the interpreter’s internal
state or for executing handy commands. Cling provides the following metaprocessor commands:

syntax: .(command), where command is:

x filename.cxx

loads filename and calls void filename() if defined;

L library | filename.cxx

loads library or filename.cxx;

printAST

(DEBUG ONLY) shows the abstract syntax tree after each processed entity;

I path

adds an include path;

.@

Cancels the multiline input;

.dynamicExtensions

Turns on cling’s dynamic extensions. This in turn enables the dynamic lookup and the late resolving of
the identifier. With that option cling tries to heal the compile-time failed lookups at runtime.

6 Chapter 1. Table of Contents

https://clang.llvm.org/

Cling Documentation, Release 1.0~dev

1.7 Applications

1. C++ in Jupyter Notebook - Xeus Cling:

The Jupyter Notebook technology allows users to create and share documents that contain live code, equa-
tions, visualizations and narrative text. It enables data scientists to easily exchange ideas or collaborate
by sharing their analyses in a straight-forward and reproducible way. Jupyter’s official C++ kernel(Xeus-
Cling) relies on Xeus, a C++ implementation of the kernel protocol, and Cling. Using C++ in the Jupyter
environment yields a different experience to C++ users. For example, Jupyter’s visualization system can be
used to render rich content such as images, therefore bringing more interactivity into the Jupyter’s world.
You can find more information on Xeus Cling’s Read the Docs webpage.

2. Interactive CUDA C++ with Cling:

CUDA is a platform and Application Programming Interface (API) created by NVIDIA. It controls GPU
(Graphical Processing Unit) for parallel programming, enabling developers to harness the power of graphic
processing units (GPUs) to speed up applications. As an example, PIConGPU is a CUDA-based plasma
physics application to solve the dynamics of a plasma by computing the motion of electrons and ions in
the plasma field. Interactive GPU programming was made possible by extending Cling functionality to
compile CUDA C++ code. The new Cling-CUDA C++ can be used on Jupyter Notebook platform, and
enables big, interactive simulation with GPUs, easy GPU development and debugging, and effective GPU
programming learning.

3. Clad:

Clad enables automatic differentiation (AD) for C++. It was first developed as a plugin for Cling, and is
now a plugin for Clang compiler. Clad is based on source code transformation. Given C++ source code of
a mathematical function, it can automatically generate C++ code for computing derivatives of the function.
It supports both forward-mode and reverse-mode AD.

4. Cling for live coding music and musical instruments:

The artistic live coding community has been growing steadily since around the year 2000. The Temporary
Organisation for the Permanence of Live Art Programming (TOPLAP) has been around since 2004, Algo-
rave (algorithmic rave parties) recently celebrated its tenth birthday, and six editions of the International
Conference on Live Coding (ICLC) have been held. A great many live coding systems have been developed
during this time, many of them exhibiting exotic and culturally specific features that professional software
developers are mostly unaware of. In this framework, Cling has been used as the basis for a C++ based
live coding synthesiser (TinySpec-Cling). In another example, Cling has been installed on a BeagleBoard
to bring live coding to the Bela interactive audio platform (Using the Cling C++ Interpreter on the Bela
Platform). These two examples show the potential mutual benefits for increased engagement between the
Cling community and the artistic live coding community.

5. Clion: The CLion platform is a Integrating Development Environment (IDE) for C and C++ by Jet-
Brains. It was developed with the aim to enhance developer’s productivity with a smart editor, code quality
assurance, automated refactorings and deep integration with the CMake build system. CLion integrates
Cling, which can be found by clicking on Tool. Cling enables prototyping and learning C++ in CLion.
You can find more information on CLion’s building instructions.

1.7. Applications 7

https://jupyter.org/
https://github.com/jupyter-xeus/xeus-cling
https://github.com/jupyter-xeus/xeus-cling
https://xeus-cling.readthedocs.io/en/latest/
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://www.nvidia.com/en-us/
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://github.com/ComputationalRadiationPhysics/picongpu
https://compiler-research.org/clad/
https://github.com/nwoeanhinnogaehr/tinyspec-cling
https://gist.github.com/jarmitage/6e411ae8746c04d6ecbee1cbc1ebdcd4
https://gist.github.com/jarmitage/6e411ae8746c04d6ecbee1cbc1ebdcd4
https://www.jetbrains.com/clion/
https://en.wikipedia.org/wiki/Integrated_development_environment
https://www.jetbrains.com/
https://www.jetbrains.com/
https://www.jetbrains.com/help/clion/cling-integration.html#install-cling

Cling Documentation, Release 1.0~dev

1.8 Conclusion

Cling is not just an interpreter, and is not just a REPL: it is a C/C++ JIT-compiler that can be embedded to
your software for efficient incremental execution of C++. Cling allows you to decide how much you want to
compile statically and how much to defer for the target platform. Cling enables reflection and introspection
information in high-performance systems such as ROOT, or Xeus Jupyter, where it provides efficient code
for performance-critical tasks where hot-spot regions can be annotated with specific optimization levels.
You ca find more information regarding Cling’s internal architecture, functionment, user-cases, and Cling’s
based project into the References Chapter.

1.9 Literature

Table 1: What is Cling?
Link Info Description
Relaxing the One Def-
inition Rule in Inter-
preted C++

Javier Lopez Gomez et
al.
29th International Con-
ference on Compiler
Construction 2020

This paper discusses how Cling enables redefini-
tions of C++ entities at the prompt, and the impli-
cations of interpreting C++ and the One Definition
Rule (ODR) in C++

Cling – The New In-
teractive Interpreter for
ROOT 6

V Vasilev et al 2012 J.
Phys.: Conf. Ser. 396
052071

This paper describes the link between Cling and
ROOT. The concepts of REPL and JIT compi-
lation. Cling’s methods for handling errors, ex-
pression evaluation, streaming out of execution re-
sults, runtime dynamism.

Interactive, Intro-
spected C++ at CERN

V Vasilev, CERN PH-
SFT, 2013

Vassil Vasilev (Princeton University) explains
how Cling enables interactivity in C++, and illus-
trates the type introspection mechanism provided
by the interpreter.

Introducing Cling, a
C++ Interpreter Based
on Clang/LLVM

Axel Naumann 2012
Googletechtalks

Axel Naumann (CERN) discusses Cling’s most
relevant features: abstract syntax tree (AST) pro-
duction, wrapped functions, global initialization
of a function, delay expression evaluation at run-
time, and dynamic scopes.

Creating Cling, an in-
teractive interpreter in-
terface

Axel Naumann 2010
LLVM Developers’
meeting

This presentation introduces Cling, an ahead-of-
time compiler that extends C++ for ease of use as
an interpreter.

8 Chapter 1. Table of Contents

https://dl.acm.org/doi/10.1145/3377555.3377901
https://dl.acm.org/doi/10.1145/3377555.3377901
https://dl.acm.org/doi/10.1145/3377555.3377901
https://iopscience.iop.org/article/10.1088/1742-6596/396/5/052071
https://iopscience.iop.org/article/10.1088/1742-6596/396/5/052071
https://iopscience.iop.org/article/10.1088/1742-6596/396/5/052071
https://www.youtube.com/watch?v=K2KqEV866Ro
https://www.youtube.com/watch?v=K2KqEV866Ro
https://www.youtube.com/watch?v=f9Xfh8pv3Fs
https://www.youtube.com/watch?v=f9Xfh8pv3Fs
https://www.youtube.com/watch?v=f9Xfh8pv3Fs
https://www.youtube.com/watch?v=BjmGOMJWeAo
https://www.youtube.com/watch?v=BjmGOMJWeAo
https://www.youtube.com/watch?v=BjmGOMJWeAo

Cling Documentation, Release 1.0~dev

Table 2: Demos, tutorials, Cling’s ecosystem:
Link Info Description
Cling integration |
CLion

2022.2 Version CLion uses Cling to integrate the Quick Doc-
umentation popup by allowing you to view the
value of the expressions evaluated at compile
time.

Interactive C++ for
Data Science

Vassil Vassilev 2021
CppCon (The C++
Conference)

In this video, the author discusses how Cling en-
ables interactive C++ for Data Science projects.

Cling – Beyond Just In-
terpreting C++

Vassil Vassilev 2021
The LLVM Project
Blog

This blog page discusses how Cling enables tem-
plate Instantiation on demand, language interop-
erability on demand, interpreter/compiler as a ser-
vice, plugins extension.

TinySpec-Cling Noah Weninger 2020 A tiny C++ live-coded overlap-add (re)synthesizer
for Linux, which uses Cling to add REPL-like
functionality for C++ code.

Interactive C++ for
Data Science

Vassil Vassilev, David
Lange, Simeon Ehrig,
Sylvain Corlay 2020
The LLVM Project
Blog

Cling enables eval-style programming for Data
Science applications. Examples of ROOT and
Xeus-Cling for data science are shown.

Interactive C++ with
Cling

Vassil Vassilev 2020
The LLVM Project
Blog

This blog page briefly discusses the concept of in-
teractive C++ by presenting Cling’s main features,
such as wrapper functions, entity redefinition, er-
ror recovery.

Using the Cling C++
Interpreter on the Bela
Platform

Jack Armitage 2019 Cling has been installed on a BeagleBoard to
bring live coding to the Bela interactive audio
platform.

Implementation of
GlobalModuleIndex in
ROOT and Cling

Arpitha Raghunandan
2012 Google Summer
of Code GSoC

GlobalModuleIndex can be used for improving
ROOT’s and Cling’s performance

Example project using
cling as library

Axel Naumann 2016
GitHub

This video showcases how to use Cling as a li-
brary, and shows how to set up a simple CMake
configuration that uses Cling.

Cling C++ interpreter
testdrive

Mika 2015 Youtube In this tutorial, a developer tries Cling for the first
time by uploading a few simple C++ user-cases
onto Cling, involving also the loading of external
files

Building an Order
Book in C++

Dimitri Nesteruk 2015
Youtube

This demo shows how to build a simple order book
using C++, CLion, Google Test and, of course,
Cling.

Cling C++ interpreter
testdrive

Dimitri Nesteruk 2015
Youtube

This tutorial describes Cling’s general features.
You will learn how to start Cling on Ubuntu, how
to write a simple expression (N=5, N++) and how
to define a Class for calculating body mass index.

Cling Interactive
OpenGL Demo

Alexander Penev 2012
Youtube

This demo shows how to use Cling for interactive
OpenGL. A rotating triangle with changing color,
a static figure, and a figure with light effects are
created.

1.9. Literature 9

https://www.jetbrains.com/help/clion/cling-integration.html#install-cling
https://www.jetbrains.com/help/clion/cling-integration.html#install-cling
https://www.jetbrains.com/help/clion/2022.2/viewing-inline-documentation.html
https://www.jetbrains.com/help/clion/2022.2/viewing-inline-documentation.html
https://www.youtube.com/watch?v=23E0S3miWB0&t=2716s
https://www.youtube.com/watch?v=23E0S3miWB0&t=2716s
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://github.com/nwoeanhinnogaehr/tinyspec-cling
https://blog.llvm.org/posts/2020-12-21-interactive-cpp-for-data-science/
https://blog.llvm.org/posts/2020-12-21-interactive-cpp-for-data-science/
https://blog.llvm.org/posts/2020-11-30-interactive-cpp-with-cling/
https://blog.llvm.org/posts/2020-11-30-interactive-cpp-with-cling/
https://gist.github.com/jarmitage/6e411ae8746c04d6ecbee1cbc1ebdcd4
https://gist.github.com/jarmitage/6e411ae8746c04d6ecbee1cbc1ebdcd4
https://gist.github.com/jarmitage/6e411ae8746c04d6ecbee1cbc1ebdcd4
https://indico.cern.ch/event/840376/contributions/3525646/attachments/1895398/3127159/GSoC_Presentation__GMI.pdf
https://indico.cern.ch/event/840376/contributions/3525646/attachments/1895398/3127159/GSoC_Presentation__GMI.pdf
https://indico.cern.ch/event/840376/contributions/3525646/attachments/1895398/3127159/GSoC_Presentation__GMI.pdf
https://github.com/root-project/cling/tree/master/tools/demo
https://github.com/root-project/cling/tree/master/tools/demo
https://www.youtube.com/watch?v=1IGTHusaJ18
https://www.youtube.com/watch?v=1IGTHusaJ18
https://www.youtube.com/watch?v=fxN4xEZvrxI
https://www.youtube.com/watch?v=fxN4xEZvrxI
https://www.youtube.com/watch?v=1IGTHusaJ18
https://www.youtube.com/watch?v=1IGTHusaJ18
https://www.youtube.com/watch?v=eoIuqLNvzFs
https://www.youtube.com/watch?v=eoIuqLNvzFs

Cling Documentation, Release 1.0~dev

Table 3: Language Interoperability with Cling:
Link Info Description
Compiler Research -
Calling C++ libraries
from a D-written DSL:
A cling/cppyy-based
approach

Alexandru Militaru
2021 Compiler-
Research Meeting

This video presents D and C++ interoperability
through SIL-Cling architecture

Table 4: Interactive CUDA C++ with Cling:
Link Info Description
Adding CUDA® Sup-
port to Cling: JIT
Compile to GPUs

Simeon Ehrig 2020
LLVM Developer
Meeting

Interactive CUDA-C++ through Cling is pre-
sented. Cling-CUDA architecture is discussed in
detail, and an example of interactive simulation
for laser plasma applications is shown.

Table 5: C++ in Jupyter Notebook - Xeus Cling:
Link Info Description
Interactive C++ code
development using
C++Explorer and
GitHub Classroom for
educational purposes

Patrick Diehl 2020
Youtube

C++Explorer is a novel teaching environment
based on Jupyterhub and Cling, adapted to teach-
ing C++ programming and source code manage-
ment.

Deep dive into the
Xeus-based Cling
kernel for Jupyter

Vassil Vassilev 2021
Youtube

Xeus-Cling is a Cling-based notebook kernel
which delivers interactive C++.

Xeus-Cling: Run C++
code in Jupyter Note-
book

LearnOpenCV 2019
Youtube

In this demo, you will learn an example of C++
code in Jupyter Notebook using Xeus-Cling ker-
nel.

Table 6: Clad:
Link Info Description
Clad: Automatic dif-
ferentiation plugin for
C++

Read The Docs web-
page

Clad is a plugin for Cling. It allows to perform
Automatic Differentiation (AD) on multivariate
functions and functor objects

Note: This project is under active development. Cling has its documentation hosted on Read the Docs.

10 Chapter 1. Table of Contents

https://www.youtube.com/watch?v=7teqrCNzrD8
https://www.youtube.com/watch?v=7teqrCNzrD8
https://www.youtube.com/watch?v=7teqrCNzrD8
https://www.youtube.com/watch?v=7teqrCNzrD8
https://www.youtube.com/watch?v=7teqrCNzrD8
https://www.youtube.com/watch?v=XjjZRhiFDVs
https://www.youtube.com/watch?v=XjjZRhiFDVs
https://www.youtube.com/watch?v=XjjZRhiFDVs
https://www.youtube.com/watch?v=HBgF2Yr0foA
https://www.youtube.com/watch?v=HBgF2Yr0foA
https://www.youtube.com/watch?v=HBgF2Yr0foA
https://www.youtube.com/watch?v=HBgF2Yr0foA
https://www.youtube.com/watch?v=HBgF2Yr0foA
https://www.youtube.com/watch?v=kx3wvKk4Qss
https://www.youtube.com/watch?v=kx3wvKk4Qss
https://www.youtube.com/watch?v=kx3wvKk4Qss
https://www.youtube.com/watch?v=4fcKlJ_5QQk
https://www.youtube.com/watch?v=4fcKlJ_5QQk
https://www.youtube.com/watch?v=4fcKlJ_5QQk
https://clad.readthedocs.io/en/latest/index.html
https://clad.readthedocs.io/en/latest/index.html
https://clad.readthedocs.io/en/latest/index.html

	Table of Contents
	When and why was Cling developed?
	Interactivity in C++ with Cling
	Why interpreting C++ with Cling?
	Used Technology
	Cling is (also, but not only) REPL
	Command Line
	Grammar
	Metaprocessor

	Applications
	Conclusion
	Literature

